Informed regularization Aiding the identification of spurious correlations
Ladda ner
Publicerad
Författare
Typ
Examensarbete för masterexamen
Program
Modellbyggare
Tidskriftstitel
ISSN
Volymtitel
Utgivare
Sammanfattning
Today, end-to-end neural networks that feature deep and complex architectures, are
common tools to use in natural language processing. By using these methods it
has become harder to identify which inputs have contributed the most to a model’s
classification. This issue leads to the problem of models overfitting on features that
cannot directly be identified by a developer.
To open up the black box of complex deep learning natural language processing
systems, this study aims to investigate what information can be extracted from the
data used to train a model and how the model’s inputs are weighted during pre diction. This thesis aims to present methods that can aid in the identification of
differences between the population a developer intends to model with a data set and
what correlations a model makes from the true content of the data.
By presenting three novel methods that can aid a developer with the task of identify ing spurious correlations, it was possible to present information regarding a spurious
correlation between two pre-selected keywords and a model’s classification. It was
also shown that the identification and reduction of spurious correlations is a tricky
subject. Results showed that, from the reduction of the spurious correlation asso ciated with the selected keyword, the model made another correlation which could
be considered as spurious.
Beskrivning
Ämne/nyckelord
NLP, Explainability, Regularization, Layer-wise relevance propagation, TF-IDF, NCOF