Adaptive Path Following Driver Model

dc.contributor.authorSathiya Venkata Narayanan, Balaji
dc.contributor.authorManickam, Muralikrishna
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mekanik och maritima vetenskapersv
dc.contributor.departmentChalmers University of Technology / Department of Mechanics and Maritime Sciencesen
dc.contributor.examinerBruzelius, Fredrik
dc.contributor.supervisorLindström, Holger
dc.date.accessioned2025-02-11T08:24:47Z
dc.date.available2025-02-11T08:24:47Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractThe evolution of advanced driver assistance systems (ADAS) and autonomous driving technologies has heightened the need for robust and adaptive driver models. This thesis focuses on developing an adaptive driver model within a Software-in-the-Loop (SIL) framework, designed to handle dynamic environments, complex scenarios, and disturbances with high precision. A state-space model is formulated to capture vehicle dynamics and error dynamics, essential for precise trajectory tracking. The error dynamics state-space model updates in real time, accounting for deviations in lateral position, yaw angle, and other key variables. This real-time updation enables the model to compute optimal control inputs using both a Linear Quadratic Regulator (LQR)-based controller and a Model Predictive Control (MPC)-based approach. MPC, with its ability to anticipate future states and optimize control inputs over a finite horizon, complements LQR by providing enhanced performance in managing constraints and nonlinearities, especially in dynamic environments. The SIL framework integrates real-time data exchange between components, leveraging middleware to maintain simulation fidelity and responsiveness. By iteratively refining error dynamics, adapting to changes in each simulation setup, and leveraging both LQR and MPC for trajectory tracking, the proposed driver model enhances precision and adaptability. This research contributes to advancing SIL frameworks, supporting safer and more reliable autonomous driving technologies while meeting industry standards.
dc.identifier.coursecodeMMSX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309113
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectAD & ADAS
dc.subjectPath following
dc.subjectAdaptive driver model
dc.subjectSoftware-in-the-Loop
dc.subjectError Dynamics
dc.subjectState-space model
dc.subjectModel Predictive Control
dc.subjectLinear Quadratic Regulator
dc.subjectTrajectory Tracking
dc.subjectLateral control
dc.subjectReal-time Control
dc.subjectLQR Controller Tuning
dc.subjectDynamic Environments
dc.subjectVehicle Dynamics
dc.subjectMiddleware Integration
dc.subjectTracking accuracy
dc.subjectMPC
dc.titleAdaptive Path Following Driver Model
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeMobility engineering (MPMOB), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
2025 Balaji Sathiya Venkata Narayanan & Muralikrishna Mancikam.pdf
Storlek:
3.86 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: