Uncovering Anomalies using Isolation Forest – A Machine Learning Approach for Request Analysis

dc.contributor.authorHagenbo, Viktoria
dc.contributor.authorRosin, Lovisa
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerSvensson, Lars
dc.contributor.supervisorBal Mallya, Neethu
dc.date.accessioned2023-11-07T09:52:19Z
dc.date.available2023-11-07T09:52:19Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractIn an increasingly digital era, the prevalence of misconduct increases as online social networks enable the creation of bots posing as normal users. This type of misconduct can appear in various forms, for example, emails containing unwanted advertisements, attempts of malware distribution, or simply collecting user-sensitive information. To detect this behaviour, using machine learning is well-considered and researched, especially regarding the analysis of the content of messages and online posts. This project explores the approach to analyze metadata from HTTP requests to find patterns for anomalous behavior, with the end goal being a machine learning module that can be integrated into a larger system for request analysis. After reviewing different approaches suggested by previous research and theoretical reasoning, the proposed system has been designed and implemented using the Isolation Forest model. Feature engineering has been utilized to extract information from sequences of input requests. The system consists of two different model instances which operate on different sequence length intervals. The conclusion to use the selected models has been obtained when evaluating differently trained Isolation Forest instances using precision, recall, and the F1 score as metrics.
dc.identifier.coursecodeLMTX38
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307332
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectMachine learning
dc.subjectIsolation Forest
dc.subjectUnsupervised learning
dc.subjectRequest analysis
dc.subjectAnomaly detection
dc.subjectFeature engineering
dc.titleUncovering Anomalies using Isolation Forest – A Machine Learning Approach for Request Analysis
dc.type.degreeExamensarbete på grundnivåsv
dc.type.uppsokM
local.programmeDatateknik 180 hp (högskoleingenjör)
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-13 VH LR.pdf
Storlek:
2.06 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: