Investigating Dynamic User-Level Scheduling to Improve AI-Based Intrusion Detection Systems on IoT

dc.contributor.authorCoban, Ali Zulfukar
dc.contributor.authorMirzai, Aria
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerPetersen Moura Trancoso, Pedro
dc.contributor.supervisorAlmgren, Magnus
dc.date.accessioned2022-11-22T12:37:59Z
dc.date.available2022-11-22T12:37:59Z
dc.date.issued2022
dc.date.submitted2020
dc.description.abstractInternet of things devices with their inherent convenience factor have exploded in numbers during the latest decade, however at the cost of rising security concerns. This is largely due to their incapability of solving complex and computationally heavy numerical problems especially when dealing with large data-sets, a key component for computers in today’s world for fending off attacks. The main contribution of this thesis is investigating how a dynamic user-level scheduler can improve the detection capabilities of AI-based intrusion detection systems and to enable retraining of an AI algorithm on an IoT device. The models are assumed to be made of lightweight and data-driven machine learning algorithms, such as ”PASAD” which we chose to utilize for this work. The scheduler was created after having initially developed a basic framework for allowing the PASAD models to detect attacks, denoted as our ”baseline” system. The experiments that followed proved that the dynamic user-level scheduler provides several additional advantages compared to the baseline, mainly a substantial throughput increase which reduces the time until attacks are detected, a critical factor from the security aspect. Additionally, a model prioritization feature was built to allow the scheduler to allocate more processing resources towards nodes it is suspecting to be under attack. Both of these variables play an important role in pawing the way to having our IoT devices being protected by more robust security schemes, even for those devices considered too resource limited today. With our scheduler implemented on an Nvidia Jetson Nano, is it possible to calculate approximately 57,000 anomaly scores per second, which are used in the attack monitoring process, for roughly 97 detection models while simultaneous retraining is taking place (results are for when PASAD is the utilized detection algorithm). Furthermore, with 75 PASAD models the scheduler is able reach ≈1.46 times the performance of the baseline with retraining enabled and with retraining disabled it reaches ≈2.15 times the performance of the baseline.
dc.identifier.coursecodeDATX05
dc.identifier.urihttps://odr.chalmers.se/handle/20.500.12380/305819
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectInternet of things
dc.subjectAnomaly-based intrusion detection system
dc.subjectUser-level scheduling
dc.subjectmodel training
dc.titleInvestigating Dynamic User-Level Scheduling to Improve AI-Based Intrusion Detection Systems on IoT
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeHigh-performance computer systems (MPHPC), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 22-108 Mirzai Coban.pdf
Storlek:
3.98 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.64 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: