Reasoning about Mutability in Graded Modal Type Theory

Publicerad

Typ

Examensarbete för masterexamen
Master's Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

Pure functional programming enables easier maintainability, parallelism, and reasoning about programs. However, mutable state has historically been at odds with the functional paradigm. Linear types provide a way to safely integrate mutable state into functional programming languages. This thesis explores the intersection of functional programming and mutable state, focusing on the challenges and innovations surrounding mutable arrays in languages with linear or uniqueness types. We present a partial formalization of a graded lambda calculus with array primitives. Graded modal types are used in an attempt to show that efficient mutable operations are safe. We tried to prove bisimilarity between copying and mutable operational semantics, but the proof is not complete.

Beskrivning

Ämne/nyckelord

type theory, uniqueness types, linear types, graded type theory, Agda formalization.

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced