Latent State Estimation for Financial Time Series, Estimating Financial Health with MCMC Methods and Particle Filters

dc.contributor.authorHermansson, Erik
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerPicchini, Umberto
dc.contributor.supervisorSchauer, Moritz
dc.date.accessioned2020-06-12T11:28:41Z
dc.date.available2020-06-12T11:28:41Z
dc.date.issued2020sv
dc.date.submitted2019
dc.description.abstractFinancial Modelling allows for prudent decision making for individual business owners and other stakeholders. The Financial Health can be seen as an underlying measure which governs the companies ability to meet its obligations and make profits. Therefore Financial Health is linked to the company’s cash flow which can readily be observed. We consider the Financial Health as a dynamic latent state and infer it from the cash flow. We are estimating this latent state under the Bayesian paradigm to take stylized properties of the cash flow into account, using a Particle Filter as part of a Monte Carlo method to sample the posterior distribution of latent state and model parameters. We investigate the performance of this approach on a real data set consisting of real cash flow from small Swedish businesses.sv
dc.identifier.coursecodeMVEX03sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/300844
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectBayesian Inference, Hidden Markov Models, Particle Filter, Financial Healthsv
dc.titleLatent State Estimation for Financial Time Series, Estimating Financial Health with MCMC Methods and Particle Filterssv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeEngineering mathematics and computational science (MPENM), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_thesis Erik Hermansson.pdf
Storlek:
1.22 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: