A probabilistic model for genetic regulation of metabolic networks

Typ
Examensarbete för masterexamen
Master Thesis
Program
Publicerad
2013
Författare
Kallus, Jonatan
Wilsson, Joel
Modellbyggare
Tidskriftstitel
ISSN
Volymtitel
Utgivare
Sammanfattning
Recent advancements in gene expression pro ling and measurement of metabolic reaction rates have led to increased interest in predicting metabolic reaction rates. In this thesis we present a principled approach for using gene expression pro les to improve predictions of metabolic reaction rates. A probabilistic graphical model is presented, which addresses inherent weaknesses in the current state of the art method for data-driven reconstruction of regulatory-metabolic networks. Our model combines methods from systems biology and machine learning, and is shown to outperform the current state of the art on synthetic data. Results on real data from S. cerevisiae and M. tuberculosis are also presented.
Beskrivning
Ämne/nyckelord
Data- och informationsvetenskap, Computer and Information Science
Citation
Arkitekt (konstruktör)
Geografisk plats
Byggnad (typ)
Byggår
Modelltyp
Skala
Teknik / material