A probabilistic model for genetic regulation of metabolic networks
dc.contributor.author | Kallus, Jonatan | |
dc.contributor.author | Wilsson, Joel | |
dc.contributor.department | Chalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers) | sv |
dc.contributor.department | Chalmers University of Technology / Department of Computer Science and Engineering (Chalmers) | en |
dc.date.accessioned | 2019-07-03T13:07:50Z | |
dc.date.available | 2019-07-03T13:07:50Z | |
dc.date.issued | 2013 | |
dc.description.abstract | Recent advancements in gene expression pro ling and measurement of metabolic reaction rates have led to increased interest in predicting metabolic reaction rates. In this thesis we present a principled approach for using gene expression pro les to improve predictions of metabolic reaction rates. A probabilistic graphical model is presented, which addresses inherent weaknesses in the current state of the art method for data-driven reconstruction of regulatory-metabolic networks. Our model combines methods from systems biology and machine learning, and is shown to outperform the current state of the art on synthetic data. Results on real data from S. cerevisiae and M. tuberculosis are also presented. | |
dc.identifier.uri | https://hdl.handle.net/20.500.12380/174171 | |
dc.language.iso | eng | |
dc.setspec.uppsok | Technology | |
dc.subject | Data- och informationsvetenskap | |
dc.subject | Computer and Information Science | |
dc.title | A probabilistic model for genetic regulation of metabolic networks | |
dc.type.degree | Examensarbete för masterexamen | sv |
dc.type.degree | Master Thesis | en |
dc.type.uppsok | H | |
local.programme | Complex adaptive systems (MPCAS), MSc |
Ladda ner
Original bundle
1 - 1 av 1
Hämtar...
- Namn:
- 174171.pdf
- Storlek:
- 983.09 KB
- Format:
- Adobe Portable Document Format
- Beskrivning:
- Fulltext