Univalent Categories A formalization of category theory in Cubical Agda

Typ
Examensarbete för masterexamen
Master Thesis
Program
Publicerad
2018
Författare
Iversen, Frederik Hanghøj
Modellbyggare
Tidskriftstitel
ISSN
Volymtitel
Utgivare
Sammanfattning
The usual notion of propositional equality in intensional type-theory is restrictive. For instance it does not admit functional extensionality nor univalence. This poses a severe limitation on both what is provable and the re-usability of proofs. Recent developments have, however, resulted in cubical type theory, which permits a constructive proof of univalence. The programming language Agda has been extended with capabilities for working in such a cubical setting. This thesis will explore the usefulness of this extension in the context of category theory. The thesis will motivate the need for univalence and explain why propositional equality in cubical Agda is more expressive than in standard Agda. Alternative approaches to Cubical Agda will be presented and their pros and cons will be explained. As an example of the application of univalence, two formulations of monads will be presented: Namely monads in the monoidal form and monads in the Kleisli form. Using univalence, it will be shown how these are equal. Finally the thesis will explain the challenges that a developer will face when working with cubical Agda and give some techniques to overcome these difficulties. It will suggest how further work can help alleviate some of these challenges.
Beskrivning
Ämne/nyckelord
Data- och informationsvetenskap, Computer and Information Science
Citation
Arkitekt (konstruktör)
Geografisk plats
Byggnad (typ)
Byggår
Modelltyp
Skala
Teknik / material