Machine Learning for PROTAC Decomposition and Enhanced Degradation Prediction

dc.contributor.authorZhang, Ranxuan
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerMercado Oropeza, Rocío
dc.contributor.supervisorRibes, Stefano
dc.date.accessioned2025-10-20T13:49:12Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractPROTACs (Proteolysis Targeting Chimeras) are bifunctional molecules composed of three components that mediate the degradation of target proteins, and are widely used in drug discovery. This project explores the application of machine learning in two key aspects: splitting PROTAC molecules into their three components (E3 ligase, linker, and POI), and predicting the degradation potential of PROTACs on target proteins. We evaluated an existing splitting model using internal data from AstraZeneca. Given recent updates to the public PROTAC dataset, we retrained the degradation prediction model on the expanded data. Additionally, we are transitioning the model from a binary classification task to a regression approach to directly predict degradation-related values such as DC50 and Dmax. We also investigated whether the solvent-accessible surface area (SASA) of lysine residues on the target protein influences degradation outcomes, though no clear relationship was observed.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310655
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectDeep Learning
dc.subjectMachine Learning
dc.subjectPRTOACs
dc.subjectCheminformatics
dc.subjectData analysis
dc.subjectCADD
dc.titleMachine Learning for PROTAC Decomposition and Enhanced Degradation Prediction
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeBiomedical engineering (MPMED), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 25-90 RZ.pdf
Storlek:
3.17 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: