Computing Diameters in Slim Graphs

Publicerad

Typ

Examensarbete för masterexamen
Master Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

With the use of large graphs with n vertices and m edges, the current approach for computing the diameter is not efficient. We have investigated a special graph class, namely slim graphs. Slim graphs are graphs whose diameter is at least some fixed fraction of the number of vertices. This constraint allows us to prove structural features in these special graphs. Using these features, we have developed three algorithms which are asymptotically superior to diameter computation in the general case. We present the following three algorithms, for a fixed 0 < k < 1/2: a (1 − k)- approximation algorithm of the diameter in O(n+m) time; a deterministic algorithm which computes the diameter in O(n2) time and a Monte Carlo algorithm which also computes the diameter in O(n2) time.

Beskrivning

Ämne/nyckelord

Data- och informationsvetenskap, Computer and Information Science

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced