Interactive Reconstruction of Monte Carlo Sampled Images with Depth of Field

dc.contributor.authorPetersson, Simon
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerAssarsson, Ulf
dc.contributor.supervisorStintorn, Erik
dc.date.accessioned2019-10-03T14:28:31Z
dc.date.available2019-10-03T14:28:31Z
dc.date.issued2019sv
dc.date.submitted2019
dc.description.abstractThe likelihood of deploying Monte Carlo path tracing as a real-time rendering technique for global illumination in production systems is ever-increasing. In recent years, developments in both software and hardware, have taken us much closer to a first version of such systems. Fast reconstruction techniques for approximating higher quality images from low sample count Monte Carlo renders, without adding additional samples, has been particularly influential. We develop a convolution neural network for reconstructing Monte Carlo rendered images with low sample counts at interactive speeds. In particular, we focus on extending an already developed neural network to support depth of field effects. Our network is a deep autoencoder that utilizes a set of auxiliary buffers, containing additional information about each pixel. We propose a novel auxiliary buffer based on the circle of confusion size in each pixel. We show that by allowing the network to access this buffer during reconstruction, it learns to distinguish between points in and out of focus. Our network reconstructs images at highly interactive frame rates but does not meet the reconstruction quality of many other approaches. We discuss potential reasons behind these performance limitations and suggest a few next steps to improve reconstruction.sv
dc.identifier.coursecodeDATX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/300394
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectComputer Graphicssv
dc.subjectPath Tracingsv
dc.subjectReal-Time Ray Tracingsv
dc.subjectDepth of Fieldsv
dc.subjectDOFsv
dc.subjectMachine Learningsv
dc.subjectDeep Learningsv
dc.subjectAutoencodersv
dc.subjectComputer Sciencesv
dc.subjectThesissv
dc.titleInteractive Reconstruction of Monte Carlo Sampled Images with Depth of Fieldsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 19-102 Petersson.pdf
Storlek:
23.12 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: