Machine Learning for Classifying Cellular Traffic

dc.contributor.authorFrölich, Isabelle
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)sv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineering (Chalmers)en
dc.date.accessioned2019-07-03T14:30:53Z
dc.date.available2019-07-03T14:30:53Z
dc.date.issued2017
dc.description.abstractToday’s cellular network is ever growing, making the need for a mechanism that can identify overloads greater each day. In this report a design science research is conducted showcasing the possibilities to use the classification machine learning algorithm naive Bayes to identify signaling overloads in a cellular network node. The research shows that naive Bayes can be used to successfully identify the greater majority of the possible overloads that could occur in a cellular node.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/250233
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectData- och informationsvetenskap
dc.subjectComputer and Information Science
dc.titleMachine Learning for Classifying Cellular Traffic
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
local.programmeSoftware engineering and technology (MPSOF), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
250233.pdf
Storlek:
1.18 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext