Machine Learning for Classifying Cellular Traffic
dc.contributor.author | Frölich, Isabelle | |
dc.contributor.department | Chalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers) | sv |
dc.contributor.department | Chalmers University of Technology / Department of Computer Science and Engineering (Chalmers) | en |
dc.date.accessioned | 2019-07-03T14:30:53Z | |
dc.date.available | 2019-07-03T14:30:53Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Today’s cellular network is ever growing, making the need for a mechanism that can identify overloads greater each day. In this report a design science research is conducted showcasing the possibilities to use the classification machine learning algorithm naive Bayes to identify signaling overloads in a cellular network node. The research shows that naive Bayes can be used to successfully identify the greater majority of the possible overloads that could occur in a cellular node. | |
dc.identifier.uri | https://hdl.handle.net/20.500.12380/250233 | |
dc.language.iso | eng | |
dc.setspec.uppsok | Technology | |
dc.subject | Data- och informationsvetenskap | |
dc.subject | Computer and Information Science | |
dc.title | Machine Learning for Classifying Cellular Traffic | |
dc.type.degree | Examensarbete för masterexamen | sv |
dc.type.degree | Master Thesis | en |
dc.type.uppsok | H | |
local.programme | Software engineering and technology (MPSOF), MSc |
Ladda ner
Original bundle
1 - 1 av 1
Hämtar...
- Namn:
- 250233.pdf
- Storlek:
- 1.18 MB
- Format:
- Adobe Portable Document Format
- Beskrivning:
- Fulltext