Active Learning and Malware Entity Extraction. A survey of active learning methods specifically implemented with a CRF for finding malware names - The hunt for Red October.
dc.contributor.author | Romare, Elin | |
dc.contributor.author | Bijelovic, Milica | |
dc.contributor.department | Chalmers tekniska högskola / Institutionen för matematiska vetenskaper | sv |
dc.contributor.department | Chalmers University of Technology / Department of Mathematical Sciences | en |
dc.date.accessioned | 2019-07-03T13:54:46Z | |
dc.date.available | 2019-07-03T13:54:46Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12380/237808 | |
dc.language.iso | eng | |
dc.setspec.uppsok | PhysicsChemistryMaths | |
dc.subject | Matematik | |
dc.subject | Grundläggande vetenskaper | |
dc.subject | Mathematics | |
dc.subject | Basic Sciences | |
dc.title | Active Learning and Malware Entity Extraction. A survey of active learning methods specifically implemented with a CRF for finding malware names - The hunt for Red October. | |
dc.type.degree | Examensarbete för masterexamen | sv |
dc.type.degree | Master Thesis | en |
dc.type.uppsok | H | |
local.programme | Engineering mathematics and computational science (MPENM), MSc |