Matematiska såll, primtalstvillingar och Chens sats

Publicerad

Typ

Examensarbete för kandidatexamen

Program

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

Matematisk sållteori har varit ett viktigt verktyg för många nutida resultat inom analytisk talteori. Med hjälp av Halberstam och Richerts Sieve Methods redogör vi för grundläggande sållteori med fokus på tillämpningar i studiet av primtalstvillingar. Vi bevisar och tillämpar varianter av Eratosthenes-Legendres såll, Bruns såll och Selbergs såll. Vi formulerar också de viktigaste resultaten från en utveckling av Selbergs såll för linjära problem. Avslutningsvis återger vi delar av beviset av Chens sats, som implicerar existensen av oändligt många par (p; p + 2) där p är ett primtal och p + 2 en produkt av maximalt 2 primtal.

Beskrivning

Ämne/nyckelord

Matematiska såll, primtal, Chens sats, primtalstvilling, Goldbachs förmodan

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced