Spatial Indexing for Moving Geometry in Main Memory

dc.contributor.authorAasa, Jakob
dc.contributor.authorLundberg, Marcus
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerAssarsson, Ulf
dc.contributor.supervisorStintorn, Erik
dc.date.accessioned2019-10-03T14:04:33Z
dc.date.available2019-10-03T14:04:33Z
dc.date.issued2019sv
dc.date.submitted2019
dc.description.abstractSpatial indexes are data structures which store objects in the form of points or geometry in two or more dimensions in such a way that subsets can be queried with high performance. However, good query performance is no guarantee for a corresponding update performance. There is currently little research of spatial indexing for non-point geometry which receive frequent updates. This thesis studies and compares different spatial indexes for this kind of data. The evaluated data structures are the simple quadtree, the loose quadtree, theloose-linear quadtree, and the R*-tree. A dynamic array is also implemented to represent a naïve approach. Where applicable, we augment the spatial indexes with two update techniques: bottom-up updating and update memo, to assess if these improve performance. Evaluation is performed by a benchmark suite, where a scenario of objects sampled from different data distributions is used to quantify query and update performance of the spatial indexes. This evaluation is divided into two steps. First, parameters specific to each data structure is chosen, with 10 million objects in the scenario. Then, we compare the data structures, the update techniques, and the memory usage of the selection. We find that the loose quadtree performs best for all measured scenarios in both updates and queries, while the R*-tree is worst, if not counting the query performance of the dynamic array. Bottom-up updating and update memo yielded unsatisfactory performance given the extra memory that is needed. The contribution of this thesis is twofold. First, we perform a thorough performance comparison for spatial indexes that support moving non-point geometry. To our knowledge, there exist no such survey at the time of writing. Secondly, we present novel query algorithms for the loose-linear quadtree which perform at least an order of magnitude better than other existing approaches.sv
dc.identifier.coursecodeDATX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/300391
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectComputersv
dc.subjectsciencesv
dc.subjectcomputer sciencesv
dc.subjectengineeringsv
dc.subjectspatial indexsv
dc.subjectquadtreesv
dc.subjectr-treesv
dc.subjectmain memorysv
dc.subjectthesissv
dc.titleSpatial Indexing for Moving Geometry in Main Memorysv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 19-90 Aasa Lundberg.pdf
Storlek:
27.04 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: