Applications for Data Analytics using JRU Logs from Autonomous Trains

Publicerad

Typ

Examensarbete för masterexamen
Master's Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

In Alstom’s autonomous railway systems used for mining operations, vast amounts of operational data are recorded by onboard Juridical Recording Units (JRUs). However, these logs are complex and difficult to interpret. This thesis addresses the challenge of parsing and structuring JRU log data to enhance its readability and enable advanced data analysis. A custom log parser was developed to convert raw logs into a structured, readable format. To explore the potential of this data for predictive analysis, an LSTM Autoencoder neural network was trained for anomaly detection based on temporal patterns. The results demonstrate the feasibility of using machine learning for operational insights, and suggest promising future applications in automated fault detection and predictive maintenance.

Beskrivning

Ämne/nyckelord

railway, trains, JRU, machine learning, LSTM, autoencoder, anomaly detection, logs, data analysis, predictive maintenance.

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced