Applications for Data Analytics using JRU Logs from Autonomous Trains

dc.contributor.authorLaessker, David
dc.contributor.authorHedquist, Vilhelm
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerAhrendt, Wolfgang
dc.contributor.supervisorPiterman, Nir
dc.date.accessioned2025-11-25T15:01:23Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractIn Alstom’s autonomous railway systems used for mining operations, vast amounts of operational data are recorded by onboard Juridical Recording Units (JRUs). However, these logs are complex and difficult to interpret. This thesis addresses the challenge of parsing and structuring JRU log data to enhance its readability and enable advanced data analysis. A custom log parser was developed to convert raw logs into a structured, readable format. To explore the potential of this data for predictive analysis, an LSTM Autoencoder neural network was trained for anomaly detection based on temporal patterns. The results demonstrate the feasibility of using machine learning for operational insights, and suggest promising future applications in automated fault detection and predictive maintenance.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310770
dc.language.isoeng
dc.relation.ispartofseriesCSE 25-68
dc.setspec.uppsokTechnology
dc.subjectrailway, trains, JRU, machine learning, LSTM, autoencoder, anomaly detection, logs, data analysis, predictive maintenance.
dc.titleApplications for Data Analytics using JRU Logs from Autonomous Trains
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComputer science – algorithms, languages and logic (MPALG), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 25-68 DL VH.pdf
Storlek:
6.44 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: