Digital Peer-Reviewer with LLM-integration

dc.contributor.authorJevdjenijevic, Aleksandar
dc.contributor.authorKurbanov, Faruk
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerCheng, Chih-Hong
dc.contributor.supervisorRawshani, Araz
dc.date.accessioned2025-09-12T08:37:18Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractThis project develops an AI-powered web application to automate academic peer review processes and assess research novelty. Built on the MERN stack, the system integrates DeepSeek’s language model to generate structured reviews and utilizes PubMed’s database to identify similar research through keyword extraction and semantic analysis. Users upload PDF documents, which are processed to extract metadata and text content, with cached results reducing redundant computations. Security is maintained via Azure’s isolated virtual machines and encrypted communications. The application successfully retrieves relevant prior research in 92% of test cases and generates reviews aligned with human feedback in critical areas. The interface organizes results into digestible sections for methodology evaluation, originality insights, and improvement suggestions. While limited to English-language text and PubMed-based comparisons, the system demonstrates potential to streamline peer review workflows through automated analysis. Future expansions could address multilingual support and broader literature databases.
dc.identifier.coursecodeLMTX38
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310472
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.titleDigital Peer-Reviewer with LLM-integration
dc.type.degreeExamensarbete på kandidatnivåsv
dc.type.degreeBachelor Thesisen
dc.type.uppsokM2

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 25-02 AJ FK.pdf
Storlek:
842.29 KB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: