Learning Abstractions via Reinforcement Learning

dc.contributor.authorJERGÉUS, ERIK
dc.contributor.authorKARLSSON OINONEN, LEO
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerDubhashi, Devdatt
dc.contributor.supervisorJohansson, Moa
dc.date.accessioned2022-10-14T12:45:37Z
dc.date.available2022-10-14T12:45:37Z
dc.date.issued2022sv
dc.date.submitted2020
dc.description.abstractIn this paper we take the first steps in studying a new approach to synthesis of efficient communication schemes in multi-agent systems, trained via reinforcement learning. We combine symbolic methods with machine learning, in what is referred to as a neuro-symbolic system. The agents are not restricted to only use initial primitives: reinforcement learning is interleaved with steps to extend the current language with novel higher-level concepts, allowing generalisation and more informative communication via shorter messages. We demonstrate that this approach allow agents to converge more quickly on a small collaborative construction task.sv
dc.identifier.coursecodeDATX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/305714
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectRLsv
dc.subjectMARLsv
dc.subjectmulti-agentsv
dc.subjectDreamCodersv
dc.subjectneuro-symbolicsv
dc.subjectabstractionsv
dc.subjectcommunicationsv
dc.subjectAIsv
dc.titleLearning Abstractions via Reinforcement Learningsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 22-113 Jergéus Karlsson Oinonen.pdf
Storlek:
1.38 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.51 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: