Biometric Authentication for the Web: A Face Recognition System

dc.contributor.authorGälldin, Erik
dc.contributor.authorLindström, Linus
dc.contributor.authorLogren, Maria
dc.contributor.authorMotin, Mikael
dc.contributor.authorSvensjö, Emil
dc.contributor.authorTengblad, Tabita
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerLinde, Arne
dc.contributor.supervisorBukhari, Syed Umer
dc.date.accessioned2025-10-24T09:33:10Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractThis bachelor thesis presents the design and implementation of a proof of concept web application for biometric authentication using face recognition. The goal was to investigate if face recognition could function as an accurate, user-friendly and secure alternative to password based login systems on web platforms. The project included developing a face recognition pipeline using existing open-source models, with added features such as anti-spoofing and encryption for data protection. The system was implemented as a web application and was evaluated through a set of user tests and performance tests on datasets. The results show that the system achieves a high accuracy and usability, even though spoofing remains as an issue. Future work includes improving the spoofing detection, fine-tuning the models for better generalization and developing the system into a scalable authentication API.
dc.identifier.coursecodeDATX11
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310664
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectface recognition
dc.subjectface detection
dc.subjectface verification
dc.subjectauthentication
dc.subjectweb security
dc.subjectconvolutional neural network
dc.subjectartifical intelligence
dc.titleBiometric Authentication for the Web: A Face Recognition System
dc.type.degreeExamensarbete på kandidatnivåsv
dc.type.degreeBachelor Thesisen
dc.type.uppsokM2

Ladda ner

Original bundle

Visar 1 - 2 av 2
Hämtar...
Bild (thumbnail)
Namn:
CSE 25-01.pdf
Storlek:
1.79 MB
Format:
Adobe Portable Document Format
Hämtar...
Bild (thumbnail)
Namn:
CSE 25-93.pdf
Storlek:
7.52 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: