Design parameter optimization of Electric Drive Units. A regression based optimization of PMSM geometrical design parameters and final drive ratio

dc.contributor.authorPanyam, Adithya Ram
dc.contributor.authorPanguluru, Chanakya
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mekanik och maritima vetenskapersv
dc.contributor.departmentChalmers University of Technology / Department of Mechanics and Maritime Sciencesen
dc.contributor.examinerSedarsky, David
dc.contributor.supervisorVelmurugan, Dhinesh
dc.date.accessioned2023-11-16T08:39:42Z
dc.date.available2023-11-16T08:39:42Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractPermanent magnet synchronous machines (PMSM) are widely used for propulsion system in electric vehicles due to their high efficiency, high torque density, excellent dynamic response and control, and reliability. Significant investments are being made to fund research on improving their efficiency, torque capabilities to enhance overall vehicle performance and driving range. To appropriately determine the size and specifications of the motor for a specific powertrain requirement, numerous geometric, electric, and mechanical parameters need to be considered. In this study, we present a method to optimize certain selected design parameters of the PMSM to improve the performance of the powertrain. The focus of this study is on the geometrical design parameters of the PMSM, while also considering the final drive ratio, to imrprove the performance of the overall powertrain. By employing orthogonal design of experiments, simulations are conducted with predefined levels of these parameters to generate a dataset used for training regression models. Two types of regression models, linear and Gaussian process, are considered and compared. The study reveals that Gaussian process regression provides more accurate predictions for the selected output variables. Subsequently, the Gaussian process regression model is used for optimizing the design parameters. The optimization process incorporates cost functions defined for particular application, such as efficiency optimization for Passenger variant and performance optimization for Performance variant.
dc.identifier.coursecodeMMSX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307364
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectpermanent magnet
dc.subjectsynchronous machine
dc.subjectparameter study
dc.subjectGaussian process regression
dc.subjectlinear regression
dc.subjectsensitivity analysis
dc.subjectdesign optimization
dc.titleDesign parameter optimization of Electric Drive Units. A regression based optimization of PMSM geometrical design parameters and final drive ratio
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeMobility engineering (MPMOB), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
2023-Panyam - (msc) Design parameter optimization of electric drive units.pdf
Storlek:
5.09 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: