Anomaly Detection on Power Input Using Machine Learning on Microcontroller Systems

dc.contributor.authorYang, Qirui
dc.contributor.authorYi, Haoming
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerAgrell, Erik
dc.contributor.supervisorOlsson, Björn
dc.date.accessioned2025-09-26T11:49:02Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractRobust −48V power input stages are essential for modern telecommunication equipment, including radio and baseband units. In practice, the input line experiences power-line disturbances (PLDs) such as square-wave ripple and voltage dips, which complicate real-time fault detection. Threshold-based protection is effective for wellknown cases but lacks adaptability to varying transients. This thesis develops and evaluates lightweight machine-learning methods for ondevice PLD classification on a resource-constrained microcontroller (MCU). A fourclass dataset (normal, ripple, milddip, severedip) is constructed by sampling at 1 kHz and segmenting signals into 20 ms windows, yielding 40,000 labeled examples. Three compact models are compared: a 1D convolutional neural network (1D-CNN), a long short-term memory (LSTM) network, and a hybrid CNN+LSTM. Models are trained and validated offline and then quantized with TensorFlow Lite (TFLite) for embedded deployment on an STM32G474. On the held-out test set, the 1D-CNN and the hybrid achieve accuracy and macro- F1 around > 99%, whereas the standalone LSTM is lower under the same 20 ms context. After full-integer (INT8) quantization, the 1D-CNN preserves accuracy while reducing the model size to about 21 kB and achieving ≈ 0.03 ms inference per 20 ms window, meeting real-time MCU constraints. In contrast, the recurrent models require SELECT_TF_OPS support in TFLite, which makes bare metal deployment less practical. These results demonstrate that a quantized 1D-CNN provides an effective and deployable solution for on-device monitoring of −48V power inputs, enabling reliable, low-latency anomaly detection in embedded telecommunication systems.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310555
dc.language.isoeng
dc.relation.ispartofseries00000
dc.setspec.uppsokTechnology
dc.subjectPLD, anomaly detection, 1D-CNN, CNN–LSTM, quantization (INT8), TensorFlow Lite, embedded microcontroller (STM32G474)
dc.titleAnomaly Detection on Power Input Using Machine Learning on Microcontroller Systems
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSystems, control and mechatronics (MPSYS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Yang_Yi_Master_Thesis_v3final.pdf
Storlek:
6.31 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: