AI-driven Player Experience Modeling in Serious Games for Software Engineering

dc.contributor.authorDahlberg, Julia
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerPenzenstadler, Birgit
dc.contributor.supervisorErlenhov, Linda
dc.date.accessioned2026-01-09T10:15:38Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractSerious games offer great potential for enhancing software engineering education, yet the use of AI-driven Player Experience Modelling (PEM) remains under-explored in this context. This study investigates how AI-enhanced adaptive features such as difficulty adjustment and dynamic guidance affect player engagement and skill acquisition in the programming game Elara. By comparing AI-driven and traditional versions of the game, the research highlights the benefits of personalized gameplay for supporting learning and motivation. The study demonstrates the promise of AI in tailoring educational experiences and calls for future work to incorporate automated player profiling, larger datasets, and emotional state recognition to further improve adaptive learning in serious games.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310854
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectPlayer Experience Modelling
dc.subjectPEM
dc.subjectSerious Games
dc.subjectEducational Games
dc.subjectAI-driven PEM
dc.subjectAI-enhanced learning
dc.subjectPersonalized learning
dc.subjectAdaptive gameplay
dc.titleAI-driven Player Experience Modeling in Serious Games for Software Engineering
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSoftware engineering and technology (MPSOF), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 25-92 JD.pdf
Storlek:
1.97 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: