Constrained Portfolio Optimization in Liability-Driven Investing

dc.contributor.authorFilip, Hallqvist
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.date.accessioned2020-02-03T08:32:41Z
dc.date.available2020-02-03T08:32:41Z
dc.date.issued2019sv
dc.date.submitted2019
dc.description.abstractIn this thesis we formulate and implement a multi-stage portfolio optimization model, and solve it using a genetic algorithm. The goals of the thesis are, apart from formulating and implementing the problem, to estimate suitable parameters for the scenario generation, and to make sure that the problem is solved in a computationally efficient manner. Lastly, we investigate and discuss the performance of the complete system, including financial aspects of the produced solutions, the stability of the solutions, and the computational complexity of the model. We find that our problem formulation is useful, and that it it allows for great flexibility with regards to adding new constraints. We also find that our genetic algorithm solves the problem in reasonable time. Before the model can be used in practice however, results show that it needs to be improved with regards to stability in the solutions.sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/300670
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.titleConstrained Portfolio Optimization in Liability-Driven Investingsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeComputer science – algorithms, languages and logic (MPALG), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
filip_hallqvist_thesis_v2.pdf
Storlek:
1.05 MB
Format:
Adobe Portable Document Format
Beskrivning:

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: