On the Brunn-Minkowski and Aleksandrov-Fenchel Inequalities

Publicerad

Författare

Typ

Examensarbete för masterexamen
Master Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

The Brunn-Minkowski inequality has a wide range of generalizations and its applications spread throughout many mathematical fields. Using a inequality by Brascamp-Lieb a functional version of Brunn-Minkowski is found in Prekopa's theorem and the Prekopa- Leindler inequality. We demonstrate the wide applicability of the Brunn-Minkowski inequality and its functional counterparts. Using basic properties of differential forms we find an alternate proof of the classical result that the volume of a Minkowksi sum is a polynomial. Further by applying techniques from the realm of differential forms an attempt is made to simplify and generalize the proof of the Aleksandrov-Fenchel inequality.

Beskrivning

Ämne/nyckelord

Grundläggande vetenskaper, Matematik, Basic Sciences, Mathematics

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced