Classifying Strictly Tessellating Polytopes

dc.contributor.authorBlom, Max
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerRowlett, Julie
dc.contributor.supervisorGoffeng, Magnus
dc.date.accessioned2021-06-22T10:00:47Z
dc.date.available2021-06-22T10:00:47Z
dc.date.issued2021sv
dc.date.submitted2020
dc.description.abstractAbstract This thesis consists of a paper and additional results. The paper shows a connection between the geometry of polytopal domains in Euclidean space and the eigenfunctions of the Dirichlet Laplacian. The necessary and sufficient geometric properties of a polytopal domain are shown for the first eigenfunction to extend to a real analytic function on the whole space. Furthermore, alcoves are essential for the proof of the main theorem. Additionally, the paper discusses how the results relate to crystallographic restrictions and lattices. Strictly tessellating polytopes are defined and used in connection to the main theorem. The paper concludes by formulating a conjecture akin to Fuglede’s, replacing tessellation by translaton with strict tessellation. In addition to the paper, results on the geometric properties of strictly tessellating polytopes are presented, and bounds on the number of strictly tessellating polytopes up to equivalence are shown.sv
dc.identifier.coursecodeMVEX03sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/302670
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.titleClassifying Strictly Tessellating Polytopessv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_thesis_Max_Blom.pdf
Storlek:
3.23 MB
Format:
Adobe Portable Document Format
Beskrivning:

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: