Traffic Classification of 5G Packet Traces

dc.contributor.authorTesen Marañon, Jose Armando
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerPathan, Risat
dc.contributor.supervisorDuvignau, Romaric
dc.date.accessioned2024-01-03T10:20:32Z
dc.date.available2024-01-03T10:20:32Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractWith the usage of mobile phones, privacy concerns have been a long-standing issue, and the recent advancement of 5G technology has only amplified these concerns. While encryption is a crucial method for protecting user privacy, studies indicate that machine learning techniques can identify web and mobile applications even though the traffic is encrypted. To explore this problem, this project aims to investigate the potential for identifying mobile applications during encrypted communication on a 5G network. The project utilizes three machine learning models, namely k-Nearest Neighbors (k-NN), Random Forest, and Long Short-Term Memory (LSTM). To achieve this goal, various factors are analyzed, including the type of traffic, packet size, and timing information, to identify specific mobile applications. This project’s results show that it is possible to identify an app over a 5G network with an accuracy of 85% approximately, raising privacy concerns on communications over a 5G network. Under this context, this job updates the current State of Art regarding the private communications over an encrypted network, showing how privacy is vulnerable in 5G networks.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307492
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subject5G
dc.subjectCommunication encryption
dc.subjectMobile apps
dc.subjectPrivacy
dc.subjectSecurity
dc.titleTraffic Classification of 5G Packet Traces
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComputer systems and networks (MPCSN), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-132 JATM.pdf
Storlek:
3.33 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: