Hierarchical Temporal Memory for Behavior Prediction

Publicerad

Typ

Examensarbete för masterexamen
Master Thesis

Program

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

This thesis is about researching and analyzing Hierarchical Temporal Memory, specifically the newly developed "HTM Cortical learning algorithms"[3] developed by Jeff Hawkins and the company Numenta. Two problems are addressed. Can this type of hierarchical memory system make an internal representation of simple data sequences at the input? And if so, does it take long to learn? Two C++ applications were developed in this thesis. The first program is used to analyze the algorithm, and the second program is used to visualize the internal states of the network. The results is very dependent of how the system is configured. If enough resources are available, the system can learn sequences, and it does not take long for the system to learn.

Beskrivning

Ämne/nyckelord

Människa-datorinteraktion (interaktionsdesign), Informations- och kommunikationsteknik, Human Computer Interaction, Information & Communication Technology

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced