Differentiable Monte Carlo Samplers with Piecewise Deterministic Markov Processes

dc.contributor.authorSeyer, Ruben
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerRingh, Axel
dc.contributor.supervisorSchauer, Moritz
dc.date.accessioned2023-06-19T09:30:38Z
dc.date.available2023-06-19T09:30:38Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractGradient estimation by Monte Carlo methods, to e.g. find optimization directions, is an important component of many problems in statistics and machine learning. In one approach, related to the reparameterization trick, the sampling method itself is differentiated pathwise to obtain a sampler for the gradient. Unfortunately, the Hamiltonian Monte Carlo and other common methods contain a non-differentiable rejection step, for which pathwise derivatives do not provide unbiased estimates and corrections are computationally expensive. Here we use recently developed rejection-free methods based on piecewise deterministic Markov processes (PDMPs) to construct differentiable Monte Carlo methods. These handle unnormalized target densities as well as unbiased estimates of the target density. We find couplings (re-parameterizations) for two PDMP methods, the Bouncy Particle sampler and the Zig-Zag sampler, which make them differentiable. The former is pathwise differentiable while the latter requires correction for large sample path perturbations, made efficient by our coupling. We investigate the theoretical properties of the resulting estimators, which only require a single sampler run. This opens up a promising new approach to stochastic gradient estimation problems.
dc.identifier.coursecodeMVEX03
dc.identifier.urihttp://hdl.handle.net/20.500.12380/306284
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectPiecewise deterministic Markov processes, Monte Carlo, gradient estimation, pathwise derivatives, reparameterization trick, probabilistic programming
dc.titleDifferentiable Monte Carlo Samplers with Piecewise Deterministic Markov Processes
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeEngineering mathematics and computational science (MPENM), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Ruben_Seyer_2023.pdf
Storlek:
2.22 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: