Finding the Densest Common Subgraph with Linear Programming

dc.contributor.authorReinthal, Alexander
dc.contributor.authorT ornqvist, Anton
dc.contributor.authorAndersson, Arvid
dc.contributor.authorNorlander, Erik
dc.contributor.authorStållhammar, Philip
dc.contributor.authorNorlin, Sebastian
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)sv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineering (Chalmers)en
dc.date.accessioned2019-07-03T14:23:36Z
dc.date.available2019-07-03T14:23:36Z
dc.date.issued2016
dc.description.abstractThis thesis studies the concept of dense subgraphs, speci cally for graphs with multiple edge sets. Our work improves the running time of an existing Linear Program (LP) for solving the Densest Common Subgraph problem. This LP was originally created by Moses Charikar for a single graph and extended to multiple graphs (DCS LP) by Vinay Jethava and Niko Beerenwinkel. This thesis shows that the run time of the DCS LP can be shortened considerably by using an interior-point method instead of the simplex method. The DCS LP is also compared to a greedy algorithm and a Lagrangian relaxation of DCS LP.We conclude that the greedy algorithm is a good heuristic while the LP is well suited to problems where a closer approximation is important.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/245174
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectData- och informationsvetenskap
dc.subjectInformations- och kommunikationsteknik
dc.subjectComputer and Information Science
dc.subjectInformation & Communication Technology
dc.titleFinding the Densest Common Subgraph with Linear Programming
dc.type.degreeExamensarbete för kandidatexamensv
dc.type.degreeBachelor Thesisen
dc.type.uppsokM2
local.programmeSoftware Engineering (300 hp)

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
245174.pdf
Storlek:
1.11 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext