CFD-Informed Neural Networks for Centrifugal Fan Design: Combining Simulation and Deep Learning to Predict the Performance of Parametrically Varied Fan Blades

dc.contributor.authorBensryd, Christian
dc.contributor.authorKarlsson, Alexander
dc.contributor.authorKarlsson, Nellie
dc.contributor.authorSerbülent, Berken
dc.contributor.authorTapasi Himanth, Karthik
dc.contributor.departmentChalmers tekniska högskola // Institutionen för mekanik och maritima vetenskapersv
dc.contributor.departmentChalmers University of Technology / Department of Mechanics and Maritime Sciencesen
dc.contributor.examinerJohansson, Håkan
dc.contributor.supervisorGonzalez Lozano, Blanca
dc.contributor.supervisorVivek, Anthony
dc.contributor.supervisorFransson, André
dc.date.accessioned2025-08-14T12:42:17Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractThis project presents the development of a surrogate model for centrifugal fan performance, focusing on the Same Sky CBM-97S series DC fan. The objective is to develop a validated CFD model of the centrifugal fan and to use the model to train neural networks that can predict the performance of varying blade geometries. To achieve this a steady state CFD model was developed in STAR-CCM+ using k − ω turbulence model and a moving reference frame to simulate the rotating impeller. After validation against experimental data, a simplified fan geometry was parametrized, and a dataset consisting of 200 simulations with varying blade count and blade angle of attack was generated. Two different supervised Neural Networks were then trained: the first predicts the pressure and velocity fields across a 2D plane section, while the other estimates performance parameters such as outlet mass flow and pressure based on the geometric inputs. Both models demonstrated high accuracy. The flow field model achieved R2 values above 0.94. The fan performance model showed mass flow and pressure predictions with errors below 6%. The project shows that the neural networks trained on the CFD simulation data are able to accurately predict a two dimensional flow field and performance variables. Future work may involve extending to 3D field predictions using a physics-informed neural network, incorporating additional parameters such as blade length, and optimizing network architecture for enhanced performance.
dc.identifier.coursecodeTME131
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310336
dc.language.isoeng
dc.subjectSTAR-CCM+
dc.subjectSurrogate Model
dc.subjectNeural Networks
dc.subjectMachine Learning
dc.subjectComputational Fluid Dynamics
dc.subjectCentrifugal Fan
dc.subjectPerformance Prediction
dc.titleCFD-Informed Neural Networks for Centrifugal Fan Design: Combining Simulation and Deep Learning to Predict the Performance of Parametrically Varied Fan Blades
dc.type.degreeProjektarbete, avancerad nivåsv
dc.type.degreeProject Report, advanced levelen

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
TME131_Project_in_Applied_Mechanics_FanBladeAlpha.pdf
Storlek:
7.46 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: