Firm Order Estimation – Combining Artificial Intelligence and Firm Data to enable Enhanced Forecasting and Key Performance Indicator Estimation

dc.contributor.authorBirgersson, Johan
dc.contributor.authorHillestad Andreasson, Erik
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerDuregård, Jonas
dc.contributor.supervisorLidell, David
dc.date.accessioned2023-11-07T10:37:03Z
dc.date.available2023-11-07T10:37:03Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractThis study investigated the performance of K-Nearest Neighbors (KNN) and Long Short-Term Memory (LSTM), a Recurrent Neural Network variant, in estimating missing data in both synthetic and real firm databases. Our objective was to identify the most effective model for imputation, considering estimation accuracy and robustness to data-specific characteristics, such as outliers and noise. Although KNN showed superior performance based on Mean Absolute Error and Mean Squared Error metrics, high Mean Absolute Percentage Error values observed for both models suggest potential issues, such as overfitting and the influence of extreme values. Neither model demonstrated significant promise for missing data estimation in this context, emphasizing the need for careful data preprocessing, model selection, and parameter tuning. Consequently, future research should consider alternative preprocessing techniques and machine learning models, underlining the importance of a nuanced understanding of the data and careful model and parameter selection for robust and accurate prediction outcomes.
dc.identifier.coursecodeLMTX38
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307337
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectRNN
dc.subjectLTSM
dc.subjectKNN
dc.subjectNeural Network
dc.subjectPerformance
dc.subjectFirm Data
dc.titleFirm Order Estimation – Combining Artificial Intelligence and Firm Data to enable Enhanced Forecasting and Key Performance Indicator Estimation
dc.type.degreeExamensarbete på grundnivåsv
dc.type.uppsokM
local.programmeDatateknik 180 hp (högskoleingenjör)

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-19 JB HA.pdf
Storlek:
918.32 KB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: