Large scale news article clustering

dc.contributor.authorYregård, Love
dc.contributor.authorLönnberg, Marcus
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)sv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineering (Chalmers)en
dc.date.accessioned2019-07-03T13:13:36Z
dc.date.available2019-07-03T13:13:36Z
dc.date.issued2013
dc.description.abstractIn this thesis we examined different approaches on how to cluster news articles so that two articles which are covering the same information would belong to the same cluster. We examined already existing algorithms and pre-processing steps as well as developed our own. Our requirements were that the algorithm should be able to handle a vast amount of articles, produce clusters of high quality and do this in a short amount of time. We managed to come up with an algorithm which was quite fast and could produce clusters of high quality. We also developed two different optimization methods in order to speed up the clustering algorithms even more. We found that these methods improved the runtime performance greatly for two of the algorithms while the cluster quality was not significantly affected.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/179841
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectInformations- och kommunikationsteknik
dc.subjectData- och informationsvetenskap
dc.subjectInformation & Communication Technology
dc.subjectComputer and Information Science
dc.titleLarge scale news article clustering
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
local.programmeComputer systems and networks (MPCSN), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
179841.pdf
Storlek:
935.19 KB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext