Virtual sensor - AI model training using VOLVO Brake temperatures

dc.contributor.authorAlami Alamdari, Armin
dc.contributor.authorFozzati, Birtukan
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mekanik och maritima vetenskapersv
dc.contributor.departmentChalmers University of Technology / Department of Mechanics and Maritime Sciencesen
dc.contributor.examinerLundén, Roger
dc.contributor.supervisorVernersson, Tore
dc.contributor.supervisorPetersson, Martin K
dc.date.accessioned2025-08-20T14:06:56Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractAccurate prediction of brake disc temperatures in heavy-duty vehicles is essential for ensuring safety, reducing wear and improving braking performance. Excessive heat buildup in the disc can lead to brake fade, accelerated material degradation and increased emissions of harmful wear particles. This thesis focuses on predicting brake disc temperatures using time-series data collected from controlled dynamometer tests. The dataset includes braking signals such as torque, pressure and speed, recorded at high frequency under a wide range of operating conditions. Various machine learning models, including neural networks, were developed to predict brake disc temperatures during individual braking events. This work serves as a foundation for future efforts to extend temperature prediction models to real-world field data and ultimately support the development of intelligent thermal monitoring systems that can reduce brake wear, improve safety and help meet upcoming Euro 7 regulations on particle emissions from braking systems.
dc.identifier.coursecodeMMSX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310363
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectBrake Disc Temperature
dc.subjectMachine Learning
dc.subjectGated Recurrent Unit
dc.subjectThermal Modelling
dc.subjectHeavy-Duty Vehicles
dc.subjectReal-Time Monitoring
dc.titleVirtual sensor - AI model training using VOLVO Brake temperatures
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeBiomedical engineering (MPMED), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
AlamiAlamdari_Fozzati_VolvoMScThesisWork_20250729.pdf
Storlek:
4.34 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: