Playtesting Match 3 Games with PPO

Publicerad

Typ

Examensarbete för masterexamen
Master's Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

The training of proximal policy optimization agents with action masking on stochastic match-3 environments is explored in this thesis. A performant, feature-rich match-3 simulator is developed, and experiments demonstrate improved performance over a random policy on both seen and unseen levels. Furthermore, the best generalization performance is achieved when training is done by sampling levels from a subset of levels.

Beskrivning

Ämne/nyckelord

Reinforcement learning, match-3

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced