Playtesting Match 3 Games with PPO
Publicerad
Författare
Typ
Examensarbete för masterexamen
Master's Thesis
Master's Thesis
Modellbyggare
Tidskriftstitel
ISSN
Volymtitel
Utgivare
Sammanfattning
The training of proximal policy optimization agents with action masking on stochastic match-3 environments is explored in this thesis. A performant, feature-rich
match-3 simulator is developed, and experiments demonstrate improved performance over a random policy on both seen and unseen levels. Furthermore, the
best generalization performance is achieved when training is done by sampling levels from a subset of levels.
Beskrivning
Ämne/nyckelord
Reinforcement learning, match-3