Playtesting Match 3 Games with PPO

dc.contributor.authorMalec, Stanislaw
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerAndersson, Adam
dc.contributor.supervisorHaghir Chehreghani, Morteza
dc.date.accessioned2023-10-24T07:55:47Z
dc.date.available2023-10-24T07:55:47Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractThe training of proximal policy optimization agents with action masking on stochastic match-3 environments is explored in this thesis. A performant, feature-rich match-3 simulator is developed, and experiments demonstrate improved performance over a random policy on both seen and unseen levels. Furthermore, the best generalization performance is achieved when training is done by sampling levels from a subset of levels.
dc.identifier.coursecodeMVEX03
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307253
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectReinforcement learning, match-3
dc.titlePlaytesting Match 3 Games with PPO
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeData science and AI (MPDSC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Stanislaw_Malec_2023.pdf
Storlek:
8.31 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: