Improving perception systems for autonomous driving

dc.contributor.authorKalander, Gustav
dc.contributor.authorHoti, Faton
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerWymeersch, Henk
dc.contributor.supervisorJohnander, Joakim
dc.contributor.supervisorGustafsson, Niklas
dc.date.accessioned2025-06-17T12:59:11Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractTransformers have become a cornerstone of modern deep learning. Typically, a transformer layer comprises attention, normalization, dropout, and a feed-forward network (FFN). This work investigates the role of the FFN in transformer-based 3D object detection by exploring two modifications: (1) replacing the FFN with a mixture of experts layer to enhance model capacity, and (2) progressively reducing—and ultimately removing—the FFN to assess its necessity. Surprisingly, neither approach led to measurable changes in detection performance, suggesting that the FFN may be functionally redundant in this context. Further experiments revealed that the model retained full performance even when the FFN was entirely eliminated, challenging the conventional assumption that FFNs are indispensable in transformer architectures. These findings raise questions about the necessity of FFNs in perception tasks, contrasting with their established empirically demonstrated importance in NLP. The results also suggest potential avenues for designing leaner, more efficient transformer variants by omitting the FFN.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309500
dc.language.isoeng
dc.relation.ispartofseries00000
dc.setspec.uppsokTechnology
dc.subjectTransformer
dc.subject3D Object Detection
dc.subjectFeed-Forward Network
dc.subjectMixture of Experts
dc.subjectModel Efficiency
dc.subjectArchitectural Redundancy
dc.titleImproving perception systems for autonomous driving
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComputer systems and networks (MPCSN), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Thesis.pdf
Storlek:
20.4 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: