Adaptive and Generalizable Vision-Language Models

Publicerad

Författare

Typ

Examensarbete för masterexamen
Master's Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

Domain generalization remains a significant challenge for vision-language models, as they are required to perform reliably on previously unseen domains during inference. In this work, we introduce a domain prompt fusion framework aimed at improving the generalization capability of CLIP-based models under domain shift. Our approach integrates three core components: a dual-part soft prompt (comprising domain-agnostic and domain-specific prompts), a domain feature extractor, and a prompt fusion mechanism. The extractor generates domain representations from input images and computes source-domain prototypes, which guide the fusion of prompt-based text features. By weighting and combining domain-aware text features according to their similarity to the input images domain representation, the model achieves improved alignment between visual and textual modalities. We evaluate the proposed method on two widely-used benchmarks: Office-Home and mini-DomainNet. The results demonstrate consistent performance gains over standard zero-shot CLIP and CoOp. Specifically, our method achieves average accuracies of 84.98% and 85.53% on Office-Home and mini-DomainNet, respectively. Extensive ablation studies and visualizations further validate the effectiveness of our design. While a small performance gap remains compared to the current state-ofthe- art method DDSPL, our analysis identifies key areas for future enhancement, including prompt design refinement, class-dependent fusion strategies, and the use of latent domains in place of manual annotations.

Beskrivning

Ämne/nyckelord

Vision-language model, prompt learning, domain generalization, prompts ensembling.

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced