Scene Change Detection

Publicerad

Typ

Examensarbete för masterexamen

Program

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

Scene Change Detection (SCD) identifies changes between the images taken at two different times, using pixel-level or point cloud approaches in most cases. Training a neural network for such a task requires a large number of images with annotated changes. Annotating changes is a slow, costly and time-consuming process. The state-of-the-art (SOTA) approach for SCD, like the DR-TANet paper, is based on transfer learning from large ImageNet datasets. This is a supervised technique and to overcome the challenges mentioned above, we introduce a self-supervised pretraining method with unlabeled datasets based on a existing D-SSCD approach that learns temporal-consistent representations of a pair of images. This project is an investigation of these approaches that can train and evaluate on available datasets through the use of a suitable loss function for the purpose of SCD. We compare results for different percentages of labeled data from different models and benchmark datasets such as Visual Localization CMU (VL_CMU_CD) and Panoramic change detection (PCD) datasets.

Beskrivning

Ämne/nyckelord

Detection, pixel-level, slow, annotating

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced