Cardiac arrhythmia classification using machine learning

Publicerad

Typ

Examensarbete för masterexamen
Master's Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

Machine learning models interpreting ECG signals enable scalability to increase the number of patients examined for cardiac arrhythmia and hence contribute to democratize healthcare. In this thesis a machine learning model for detecting ectopic heartbeat arrhythmias is developed and evaluated. The initial aim was to interpret signals from mobile ECG devices but due to lack of data, the model was developed and evaluated on the publicly available MIT-BIH Arrhythmia Database. The evaluation followed an inter-patient evaluation scheme to mimic the performance of the model in real-world clinical settings. The proposed model design included ensemble learning between a convolutional neural network and a multilayer perceptron network. The model was able to detect non-ectopic, supraventricular ectopic, and ventricular ectopic heartbeats with a recall of 97 %, 62 %, and 78 %, respectively.

Beskrivning

Ämne/nyckelord

Arrhythmia, electrocardiogram, machine learning, convolutional neural network, multilayer perceptron network, ensemble learning

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced