Cardiac arrhythmia classification using machine learning

dc.contributor.authorSöderholm, Adam
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.departmentChalmers University of Technology / Department of Physicsen
dc.contributor.examinerGranath, Mats
dc.contributor.supervisorKarlsson, Gustav
dc.date.accessioned2023-06-30T10:51:13Z
dc.date.available2023-06-30T10:51:13Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractMachine learning models interpreting ECG signals enable scalability to increase the number of patients examined for cardiac arrhythmia and hence contribute to democratize healthcare. In this thesis a machine learning model for detecting ectopic heartbeat arrhythmias is developed and evaluated. The initial aim was to interpret signals from mobile ECG devices but due to lack of data, the model was developed and evaluated on the publicly available MIT-BIH Arrhythmia Database. The evaluation followed an inter-patient evaluation scheme to mimic the performance of the model in real-world clinical settings. The proposed model design included ensemble learning between a convolutional neural network and a multilayer perceptron network. The model was able to detect non-ectopic, supraventricular ectopic, and ventricular ectopic heartbeats with a recall of 97 %, 62 %, and 78 %, respectively.
dc.identifier.coursecodeTIFX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/306516
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectArrhythmia, electrocardiogram, machine learning, convolutional neural network, multilayer perceptron network, ensemble learning
dc.titleCardiac arrhythmia classification using machine learning
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Masters_thesis_Adam_Soderholm_final.pdf
Storlek:
2.64 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: