Tuning behavior-based robotics in mixed reality using unmanned aerial vehicles

dc.contributor.authorHuang, Shao-Hsuan
dc.contributor.authorXue, Fengxiang
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mekanik och maritima vetenskapersv
dc.contributor.departmentChalmers University of Technology / Department of Mechanics and Maritime Sciencesen
dc.contributor.examinerBenderius, Ola
dc.contributor.supervisorPons, Arion
dc.date.accessioned2025-11-14T10:30:19Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractThis thesis investigate a behavior-based robotics (BBR) approach for enabling autonomous unmanned aerial vehicle (UAV) navigation and obstacle avoidance in unknown environments without relying on global maps. The system leverages lightweight reactive control architectures, finite state machine (FSM) and subsumption architecture, to support real-time decision making based on local sensor feedback. A hardware-in-the-loop (HIL) framework is employed to safely evaluate controller performance under realistic conditions. The HIL setup integrates the Crazyflie UAV platform, lighthouse-based state estimation, simulated sensor inputs, and a modular software stack based on microservice architecture. To further enhance navigation efficiently, genetic algorithm (GA) optimization is applied to tune key controller parameters, including safe distances, tuning angles, and behavior transition timings. Experimental results demonstrate that both FSMbased and subsumption-based controllers enable robust mapless navigation and effective obstacle avoidance in complex indoor scenarios. The subsumption controller exhibits superior performance in cluttered environments, while the FSM controller performs better in open spaces. The findings highlight the feasibility of behavior-based UAV control in GPS-denied, mapless indoor settings, and demonstrate the value of modular HIL testing for rapid prototyping and validation of autonomous navigation strategies.
dc.identifier.coursecodeMMSX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310743
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectUAV
dc.subjectautonomous navigation
dc.subjectmapless navigation
dc.subjectFSM
dc.subjectsubsumption architecture
dc.subjectHIL
dc.subjectobstacle avoidance
dc.subjectGA
dc.subjectindoor navigation
dc.subjectBBR
dc.titleTuning behavior-based robotics in mixed reality using unmanned aerial vehicles
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSystems, control and mechatronics (MPSYS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
2025 Shao-Hsuan Huang & Fengxiang Xue.pdf
Storlek:
2.86 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: