Real-time anomaly detection in computer networks using machine learning

dc.contributor.authorNilsson, Per
dc.contributor.authorBranzell, Alexander
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerAlmgren, Magnus
dc.date.accessioned2019-07-12T12:21:23Z
dc.date.available2019-07-12T12:21:23Z
dc.date.issued2019sv
dc.date.submitted2019
dc.description.abstractThis thesis explains how to employ machine learning methods for anomaly detection in real-time on a computer network. While using machine learning for this task is not a novel concept, little literature is on the subject of doing it in real time. Most machine learning research in computer network anomaly detection is based on the KDD ’99 data set and aims to prove the efficiency of the algorithms presented. The focus on this data set has caused a shortage of scientific papers explaining how to gather network data, extract features and train algorithms for use in real time networks. It has been argued that using the KDD ’99 data set for anomaly discovery is not applicable to real time networks. This thesis proposes how the data gathering process can be done using a dummy network and compares the results of k-means clustering, one class SVM and LSTM neural networks with reported results of the same algorithms on the KDD ’99 data set. The results show that algorithms trained using the KDD data set have worse accuracy, but that this can be linked to the lack of complexity in the gathered data.sv
dc.identifier.coursecodeDATX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/300052
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectNetwork Securitysv
dc.subjectAnomaly Detectionsv
dc.subjectReal-Timesv
dc.subjectComputer Networks,sv
dc.subjectMachine Learningsv
dc.subjectTime Seriessv
dc.subjectData Generationsv
dc.titleReal-time anomaly detection in computer networks using machine learningsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 19-78 Nilsson Branzell.pdf
Storlek:
2.85 MB
Format:
Adobe Portable Document Format
Beskrivning:
CSE Nilsson Branzell

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: