Multiscale Techniques in Linear Elasticity
Ladda ner
Publicerad
Författare
Typ
Examensarbete för masterexamen
Master Thesis
Master Thesis
Program
Modellbyggare
Tidskriftstitel
ISSN
Volymtitel
Utgivare
Sammanfattning
We use a local orthogonal decomposition (LOD) technique to derive a finite element method for planar linear elasticity problems with strongly heterogeneous material data and inhomogeneous Dirichlet and Neumann boundary conditions. These problems are becoming more and more relevant due to the increasing use of composite materials. We apply our generalized finite element method in numerical experiments and observe optimal convergence rates in the energy norm. We also prove an a posteriori error estimate for the method and use it to propose a basic adaptive algorithm for error reduction. Keywords: finite element method, multiscale method, LOD, mixed boundary conditions, a posteriori error estimate, linear elasticity, composite material.
Beskrivning
Ämne/nyckelord
Matematik, Mathematics