Multiscale Techniques in Linear Elasticity

Publicerad

Typ

Examensarbete för masterexamen
Master Thesis

Program

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

We use a local orthogonal decomposition (LOD) technique to derive a finite element method for planar linear elasticity problems with strongly heterogeneous material data and inhomogeneous Dirichlet and Neumann boundary conditions. These problems are becoming more and more relevant due to the increasing use of composite materials. We apply our generalized finite element method in numerical experiments and observe optimal convergence rates in the energy norm. We also prove an a posteriori error estimate for the method and use it to propose a basic adaptive algorithm for error reduction. Keywords: finite element method, multiscale method, LOD, mixed boundary conditions, a posteriori error estimate, linear elasticity, composite material.

Beskrivning

Ämne/nyckelord

Matematik, Mathematics

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced