Multiscale Techniques in Linear Elasticity

dc.contributor.authorForslund, Robert
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.departmentChalmers University of Technology / Department of Mathematical Sciencesen
dc.date.accessioned2019-07-03T13:51:39Z
dc.date.available2019-07-03T13:51:39Z
dc.date.issued2015
dc.description.abstractWe use a local orthogonal decomposition (LOD) technique to derive a finite element method for planar linear elasticity problems with strongly heterogeneous material data and inhomogeneous Dirichlet and Neumann boundary conditions. These problems are becoming more and more relevant due to the increasing use of composite materials. We apply our generalized finite element method in numerical experiments and observe optimal convergence rates in the energy norm. We also prove an a posteriori error estimate for the method and use it to propose a basic adaptive algorithm for error reduction. Keywords: finite element method, multiscale method, LOD, mixed boundary conditions, a posteriori error estimate, linear elasticity, composite material.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/226788
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectMatematik
dc.subjectMathematics
dc.titleMultiscale Techniques in Linear Elasticity
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
226788.pdf
Storlek:
1.7 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext