AXI4 Interfaces on a Deep Neural Network Accelerator

dc.contributor.authorCao, Yuxiang
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerLarsson-Edefors, Per
dc.contributor.supervisorSvensson, Lars
dc.date.accessioned2025-09-10T11:24:38Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractThe demand for artificial intelligence in intellectual property and hardware platforms including field-programmable gate arrays and application-specific integrated circuits is rapidly increasing, especially in fields such as computer vision, radar, and image analysis. However, traditional artificial intelligence acceleration methods are facing challenges due to the surge in data volumes, necessitating the development of sustainable computing solutions. Reconfigurable devices, renowned for their high customization, adaptability, and parallelism properties, are emerging as pivotal components in addressing these challenges. This thesis project investigates the integration of an AMBA AXI4-Lite slave interface into a deep neural network accelerator intellectual property core using VHDL. The primary objective is to optimize communication channels between accelerators and processors, thereby enhancing system configuration accuracy and memory management efficiency. The anticipated outcome encompasses performance enhancements based on the implementation of the AXI4-Lite slave interface. The study extends its scope to include optimize communication pathways and exploring novel approaches to system configurations and memory management within the intellectual property core design.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310447
dc.language.isoeng
dc.relation.ispartofseriesCSE 24-172
dc.setspec.uppsokTechnology
dc.subjectFPGA, VHDL, RTL design, IP core, artificial intelligence
dc.titleAXI4 Interfaces on a Deep Neural Network Accelerator
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeEmbedded electronic system design (MPEES), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-172 YC.pdf
Storlek:
2.15 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: