Developing a Self-learning Intelligent Agent in StarCraft II - Deep Reinforcement Learning with Imitation Learning

dc.contributor.authorChiu Falck, Karl-Rehan
dc.contributor.authorJohansson, Niclas
dc.contributor.authorSvensson, Emma
dc.contributor.authorVeintie, Markus
dc.contributor.authorWang, Franz
dc.contributor.authorWillim, Daniel
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerSeger, Carl-Johan
dc.contributor.supervisorPrasad, K V S
dc.date.accessioned2020-10-19T14:12:06Z
dc.date.available2020-10-19T14:12:06Z
dc.date.issued2019sv
dc.date.submitted2020
dc.description.abstractKnowledge of machine learning is becoming more essential in many fields. This thesis explores and outlines the basics of machine learning through the complex game StarCraft II with limited prior knowledge and resources. In particular deep Q-learning in combination with imitation learning was explored in order to reduce the time required for an agent to become capable of playing the game. A few simpler environments were used as initial challenges before StarCraft II was explored. For all environments, the thesis reports a comparison of performance between the agents utilizing imitation learning and those that did not. In the cases of the simpler environments, agents using deep Q-learning combined with imitation learning showed significantly improved training time. Due to problems with the reward structure for the complex game StarCraft II no conclusion could be drawn about the implications of imitation learning in complex environments.sv
dc.identifier.coursecodeDATX02sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/301904
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectDeep Q-Learningsv
dc.subjectDeep Q-Networksv
dc.subjectImitation Learningsv
dc.subjectMachine Learningsv
dc.subjectPySC2sv
dc.subjectReinforcement Learningsv
dc.subjectStarCraft IIsv
dc.titleDeveloping a Self-learning Intelligent Agent in StarCraft II - Deep Reinforcement Learning with Imitation Learningsv
dc.type.degreeExamensarbete på kandidatnivåsv
dc.type.uppsokM2

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
DATX02-19-83 Uppladdad i 360.pdf
Storlek:
3.35 MB
Format:
Adobe Portable Document Format
Beskrivning:

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: