Advances in Neural Networks for Optimizing Drinking Water Pipeline Management - A Comprehensive Literature Review and Practical Application in Network Calibration with Roughness Analysis

dc.contributor.authorMÜHLFELD, David
dc.contributor.departmentChalmers tekniska högskola / Institutionen för arkitektur och samhällsbyggnadsteknik (ACE)sv
dc.contributor.departmentChalmers tekniska högskola / Institutionen för arkitektur och samhällsbyggnadsteknik (ACE)en
dc.contributor.examinerPettersson, Thomas
dc.contributor.supervisorPettersson, Thomas
dc.date.accessioned2025-07-30T07:09:11Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractautomation of a water distribution network calibration process in an aim to attain efficiency while eliminating sources of error. In this respect, a literature review forms part of modern applications of AI to water management and covers a practical case study about network calibration. The theoretical part describes the research status quo regarding AI and Neural Networks for water management, in general, and a bit more concretely towards network calibration. In that respect, the practical section covers the implementation of an artificial neural network to proceed with the automatic calibration for a real water supply network. Methods based purely on AI do not hold great hopes for network calibration. Therefore, further research is needed to test approaches such as Physically Informed Neural Networks or hybrid methods.
dc.identifier.coursecodeACEX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310247
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectNeural Networks
dc.subjectDrinking Water Pipeline Management
dc.subjectNetwork Calibration
dc.subjectRoughness Analysis
dc.subjectArtificial Intelligence in Water Systems
dc.subjectHydraulic Modeling
dc.titleAdvances in Neural Networks for Optimizing Drinking Water Pipeline Management - A Comprehensive Literature Review and Practical Application in Network Calibration with Roughness Analysis
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeInfrastructure and environmental engineering (MPIEE), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
ACEX30 - David Mühlfeld.pdf
Storlek:
4.25 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: