LiDAR-Based Semantic Segmentation for Marine Surroundings: Optimization strategies for segmentation classification in a marine environment

dc.contributor.authorJonsson, Hanna
dc.contributor.authorScholtz, Daniel
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mekanik och maritima vetenskapersv
dc.contributor.departmentChalmers University of Technology / Department of Mechanics and Maritime Sciencesen
dc.contributor.examinerForsberg, Peter
dc.contributor.supervisorBergenwall, Jonatan
dc.contributor.supervisorJonsson, Hanna
dc.date.accessioned2023-07-04T16:02:40Z
dc.date.available2023-07-04T16:02:40Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractIn this thesis, methods for optimize an existing Convolutional Neural Network model for semantic segmentation are proposed. This is done through examining the size of the network, loss functions, dataset and how it can be preprocessed in different ways. The investigation show that preprocessing the data do not improve the model and that cross entropy loss is the best loss function when the dataset is highly imbalanced. The results from this project together with suggestions for future work shows bright results for future implementation.
dc.identifier.coursecodeMMSX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/306574
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectSemantic Segmentation
dc.subjectLiDAR
dc.subjectCNN
dc.subjectU-net
dc.subjectOptimization
dc.titleLiDAR-Based Semantic Segmentation for Marine Surroundings: Optimization strategies for segmentation classification in a marine environment
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSystems, control and mechatronics (MPSYS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
2023 Hanna Jonsson & Daniel Scholtz.pdf
Storlek:
17.43 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: